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ABSTRACT: The coronavirus disease pandemic caused by infection
with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has affected the global healthcare system. As low-molecular-weight drugs
have high potential to completely match interactions with essential
SARS-CoV-2 targets, we propose a strategy to identify such drugs using
the fragment-based approach. Herein, using ligand- and protein-observed
fragment screening approaches, we identified niacin and hit 1 binding to
the catalytic pocket of the main protease (Mpro) of SARS-CoV-2, thereby
modestly inhibiting the enzymatic activity of Mpro. We further searched
for low-molecular-weight drugs containing niacin or hit 1 pharmaco-
phores with enhanced inhibiting activity, e.g., carmofur, bendamustine,
triclabendazole, emedastine, and omeprazole, in which omeprazole is the
only one binding to the C-terminal domain of SARS-CoV-2 Mpro. Our
study demonstrates that the fragment-based approach is a feasible strategy for identifying low-molecular-weight drugs against the
SARS-CoV-2 and other potential targets lacking specific drugs.

The coronavirus disease (COVID-19) pandemic caused by
the severe acute respiratory syndrome coronavirus 21−3

(SARS-CoV-2) has so far affected >8 million people
worldwide, with a mortality rate over 5%. Main protease
(Mpro or 3CLpro) is one of the most extensively studied targets
of coronaviruses.4 Mpro plays an essential role in the cleavage of
viral RNA-translated virus polypeptide5 and recognizes at least
11 cleavage sites in replicase polyprotein 1ab, e.g., LQ↓SAG (↓
denotes the cleavage site). Covalent inhibitors against the
SARS-CoV-2 Mpro have recently demonstrated potency toward
inhibiting viral replication in cellular assays;6,7 this further
underpins the druggability of Mpro. However, these compounds
remain in the early stages of preclinical studies, and the
development of new drugs usually takes years. The lack of
drugs targeting SARS-CoV-2 currently poses a threat to
numerous COVID-19 patients.
The COVID-19 pandemic has necessitated the repurposing

of oral drugs.8 As most recently approved drugs have been
designed and optimized for specific targets, they are unlikely to
completely match interactions with the SARS-CoV-2 targets.
Compared with 13 550 potential drugs in the DrugBank
database at various stages from preclinical studies through
approval, the estimated number of druglike compounds
(molecular weight of ∼500 Da) is reportedly approximately
1060. Therefore, the possibility of uncovering a highly potent
and specific drug against SARS-CoV-2 is quite slim.
Conversely, low-molecular-weight drugs with intermediate
potency and high safety can be an alternative treatment

against SARS-CoV-2. The toxicity of many low-molecular-
weight drugs has been well understood owing to long clinical
trials. Furthermore, their low structural complexity increases
the odds of fully matching the interactions with anti-SARS-
CoV-2 targets; for example, the chemical space of compounds
with <11 non-hydrogen atoms is approximately 109. This is the
cornerstone of fragment-based lead discovery,9 and many of
the compounds in the fragment library were indeed extracted
from pharmacophores of approved drugs. We therefore
hypothesize that it is highly possible to identify a low-
molecular-weight drug containing pharmacophores using
fragment-based screening (FBS).
We therefore compared 3508 compounds in our fragment

library10−15 with repurposed drugs from virtual screening,
generously released by Prof. Hualiang Jiang at Chinese
Academy of Sciences Shanghai Institute of Materia Medica.
If these candidates did bind at a high affinity as predicted, their
pharmacophores should bind as well, albeit at a weaker affinity.
A total of 38 compounds (Table S1) as pharmacophores
(substructures) of these repurposed drugs were thus screened
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against the SARS-CoV-2 Mpro (residue 4-306). These weak
binders were readily identified using a nuclear magnetic
resonance (NMR) fragment-based approach,16−18 e.g., the

ligand-observed spectra of saturation transfer difference (STD)
and WaterLOGSY (Figure 1a). Three hits of the SARS-CoV-2
Mpro were identified: niacin, hit 1, and hit 2 (Figure 1b). The

Figure 1. Fragment-based screening identified three hits of the SARS-CoV-2 main protease. (A) NMR ligand-observed spectra of three
representative hits in the presence of 10 μM full-length SARS-CoV-2 Mpro. (B) Chemical structures of the three hits. (C) Inhibition of the
enzymatic activity of the SARS-CoV-2 Mpro (5 μM) by the three hits (4 mM). The negative control was treated using fluorescence-labeled peptide
(16 μM) in the absence of Mpro.

Figure 2. Binding topology of niacin and hit 1 determined from NMR chemical shift perturbations. (A) Superimposition of 2D 1H−15N HSQC
spectra of the SARS-CoV-2 Mpro-N in the absence and presence of niacin. The ligand/protein molar ratios are shown. (B) Chemical shift
perturbations induced by hit 1. (C) Chemical shift perturbations induced by niacin (red), hit 1 (blue), or both (green) were mapped to the surface
of the crystal structure of the SARS-CoV-2 Mpro (PDB code: 6LU7).
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hit rate of 8% was slightly higher than that of our FBS against
other targets,19,20 which suggests that the success rate can be
enhanced by virtual screening a priori. The remaining 35
fragments demonstrated no detectable binding, probably
because of the distracting false positives in virtual screening.
The potency of the three hits was then evaluated using
enzymatic activity assay of the SARS-CoV-2 Mpro (Figure 1c).
Niacin and hit 1 moderately inhibited the cleavage of
fluorescent-labeled polypeptide (FITC-AVLQSGFR-Lys-
(Dnp)-Lys-NH2) by the SARS-CoV-2 Mpro.
To further map the binding sites of niacin and hit 1, we

determined the chemical shift perturbations (CSPs) of 15N-
labeled Mpro induced by the titration of these two compounds.
However, the severe signal overlap was observed in the
heteronuclear single-quantum correlation (HSQC) spectrum
of the 15N labeled full-length SARS-CoV-2 Mpro. The N-
terminus (residues 1-199)21 and the C-terminus (187-306)22

of SARS-CoV Mpro were separately studied by NMR
spectroscopy, and the free-form crystal structures (PDB
codes: 2QCY, 4HI3, and 3VB3) reveal remarkable interdo-
main plasticity of the wild-type or R298A mutant of SARS-
CoV Mpro.23−25 Considering the high sequence identity of 96%
between the main proteases of SARS-CoV and SARS-CoV-2,
the N-terminal domain (Mpro-N) with the catalytic core
included (residues 4-199) was used with a well-dispersed
HSQC spectrum. It thus enabled many 1H−15N amide
chemical shift assignments transferred directly from SARS-
CoV Mpro-N. Key residues proximal to the catalytic site,
including H41, V42, D48, N51, G143, H163, and V186, were
thus assigned (Figure S1). Both niacin and hit 1 perturb a
common residue V42, suggesting that these two hits bind to
the catalytic core of SARS-CoV-2 Mpro. Interestingly, these two
hits also recognize different sets of residues in the catalytic
core; for example, niacin perturbs H41, G143, N51, and V186

(Figure 2a), whereas hit 1 induces CSPs of residues M165,
E166, and L167 (Figure 2b). Mapping of these residues to the
surface representation of the crystal structure of the SARS-
CoV-2 Mpro (PDB code: 6LU7)26 suggested that these two hits
adopted different orientations in the catalytic site, with a
shared anchor point near V42 (Figure 2c). Considering the
molecular size of niacin and the spatial distribution of the
perturbed residues, niacin probably binds more than one site.
Nevertheless, the CSP pattern suggests that the catalytic core
of the SARS-CoV-2 Mpro accommodates compounds larger
than niacin and hit 1.
We therefore searched for low-molecular-weight (<400 Da)

drugs containing the pharmacophores of niacin and hit 1. As a
niacin derivative, carmofur induced an extra set of cross peaks
at a ligand/protein molar ratio of 2:1, and some original signals
completely disappeared at a molar ratio of 4:1 (Figure S2a).
This indicated a strong binding between carmofur and SARS-
CoV-2 Mpro as validated by the IC50 of 2.8 ± 0.2 μM
determined using enzymatic assay at an Mpro concentration of
0.5 μM (Figure S2b). However, the original NMR signals of
SARS-CoV-2 Mpro-N completely disappeared at a ligand/
protein molar ratio that significantly deviated from a
stoichiometry of 1:1. It has been recently demonstrated that
carmofur is a covalent inhibitor of the main protease of the
SARS-CoV-2, with an IC50 value of 1.82 μM in the presence of
0.2 μM enzyme;26 this was consistent with our measurement as
a higher Mpro concentration was used in our case. Collectively,
these data suggest that covalent linking to the SARS-CoV-2
Mpro is driven by excess carmofur. Nevertheless, using this
fragment-based approach is a feasible strategy for repurposing
low-molecular-weight drugs targeting SARS-CoV-2 Mpro.
Further pharmacophore identification and molecular dock-

ing nominated several low-molecular-weight analogues of hit 1,
for example, triclabendazole, emedastine, and bendamustine

Figure 3. Potency and binding topology of low-molecular-weight drugs as derivatives of hit 1. (A) Dose-dependent inhibition of the enzymatic
activity of the SARS-CoV-2 Mpro (0.5 μM) by bendamustine and emedastine in the presence of 16 μM fluorescent-labeled substrate. (B) Chemical
shift perturbations of 15N-labeled SARS-CoV-2 Mpro-N induced by bendamustine and emedastine at the annotated ligand/protein molar ratio.
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(Figure S3a). The single-dose enzymatic assay showed that
these three drugs had significantly higher potency than hit 1
(Figure S3b). We further determined the dose-dependent
response of bendamustine and emedastine in the inhibition of
the SARS-CoV-2 Mpro activity, with IC50 values of 26 ± 1 and
82 ± 7 μM (Figure 3a). The IC50 value of triclabendazole was
roughly estimated to be 70 μM from the two-dose inhibition
rates (31% and 72% inhibition at 50 μM and 100 μM
triclabendazole, respectively), as limited by the low aqueous
solubility of triclabendazole. Further, bendamustine and
emedastine induced significantly larger CSPs in a dose-
dependent manner than hit 1 (Figure 3b).
In the process of searching for effective low-molecular-

weight drugs targeting SARS-CoV-2 Mpro, omeprazole as a hit
1 analogue was uncovered capable of inhibiting the protease
activity with IC50 values of 283 ± 24 μM (Figure 4A).
However, omeprazole did not induce any detectable CSPs of
the SARS-CoV-2 Mpro-N (Figure S4).We hence titrated
omeprazole to the 15N-labeled C-terminal protease (Mpro-C,
residues 187-306) of SARS-CoV-2. Benefiting from the well-
dispersed HSQC spectrum of the SARS-CoV-2 Mpro-C and
high sequence identity with the SARS Mpro, we may transfer
many 1H−15N amide chemical shift assignments directly
(Figure S5)20. The omeprazole-induced CSPs (Figure 4B)
suggests that omeprazole binds to the C-terminus instead of
the catalytic N-terminus of SARS-CoV-2. The docking pose of
omeprazole (Figure S6) suggests that it deviates over 17.6 Å
from the known N3 covalent inhibitor in the N-terminus of
SARS-CoV-2 Mpro, which impedes the cross-linking of these
two inhibitors. Conversely, omeprazole can be in combina-
tional use with other hit 1 analogues, as the protease activity
was mediated by binders in the N- and C-terminus of SARS-
CoV-2 Mpro. We hence carried out the enzymatic assay of
SARS-CoV-2 Mpro in the presence of omeprazole or
emedastine individually, or both (Figure 4C). The data show
that the inhibition of the enzymatic activity of SARS-CoV-2
Mpro is additive; that is, cocktails can in principle be used at a
lower dose of each component. Thus, less toxicity was
expected.
Taken together, our fragment-based strategy facilitates the

identification of low-molecular-weight drugs against the SARS-

CoV-2 Mpro. First, this approach can be readily applied to
identify low-molecular-weight drugs against other SARS-CoV-
2 targets (e.g., RNA-dependent RNA polymerase or the
receptor-binding domain of the spike protein). Second, a
combination of these low-molecular-weight drugs may be used
to gain higher potency than that achieved via a single
compound if their binding topologies show no evidence of
steric repulsion. Finally, although carmofur and bendamustine
show higher potency than the fragment screening hits, the
toxicity of anticancer drugs remains a challenge in their clinical
applications. Conversely, triclabendazole, emedastine, or
omeprazole could be valuable in inhibiting the SARS-CoV-2
replication at the early stage. These compounds may serve as a
new starting point for the next round of drug discovery, as they
contain pharmacophores distinct from the published covalent
or peptidomimetic inhibitors.6,7,26−28 In general, our study
provides new insights toward the repurposing of low-
molecular-weight drugs against the SARS-CoV-2 and other
potential targets lacking specific drugs.
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